Porcine placenta hydrolysates enhance osteoblast differentiation through their antioxidant activity and effects on ER stress
نویسندگان
چکیده
BACKGROUND Osteoporosis is a disease characterized by decreased bone strength, decreased bone mass, and bone deterioration. Oxidative damage is an important contributor to functional changes in the development of osteoporosis. Here we found that porcine placenta hydrolysates (PPHs) protect MC3T3-E1 osteoblastic cells against hydrogen peroxide (H2O2)-induced oxidative damage. METHODS In vitro cell viability was determined using trypan blue dye exclusion. ER stress and apoptosis were evaluated using immunoblotting and a commercially available caspase kit. ALP, osteocalcin, Runx2, and osterix expression levels were evaluated by RT-PCR using isolated RNA. ROS, NADPH oxidase, and SOD activity levels were also measured. RESULTS We investigated the mechanisms underlying PPH-mediated inhibition of H2O2-induced ER stress and ROS production. PPHs also regulated osteoblast differentiation via the upregulation of alkaline phosphatase (ALP) expression in MC3T3-E1 osteoblastic cells. Also, treatment with PPHs enhanced the transcription of osteocalcin, Runx2, and osterix. These effects were all associated with the antioxidant actions of PPHs. Moreover, PPHs reversed the decrease in SOD activity, decreased ROS release, and inhibited NADPH oxidase activity in H2O2-treated MC3T3-E1 osteoblastic cells. CONCLUSIONS PPHs protect cells against H2O2-induced cell damage when ER stress is involved. In addition, PPHs enhance osteoblast differentiation. This enhancement likely explains the regulatory effect of PPHs on bone metabolism disturbances, i.e. PPHs control ER stress and the related ROS production in osteoblasts.
منابع مشابه
Porcine placenta hydrolysates regulate calcium disturbance in MC3T3-E1 osteoblastic cells
BACKGROUND In bone metabolism, Ca(2+) disturbance and oxidative damage are the main biochemical factors related to pathology. Osteoblasts are bone-forming cells that also control bone endocrinology. Endocrine hormones and proteins are matured, folded, and secreted in the endoplasmic reticulum (ER). ER stress has emerged as a new pathological mechanism to explain bone disturbance. Here we studie...
متن کاملEffect of High Pressure on the Porcine Placenral Hydrolyzing Activity of Pepsin, Trypsin and Chymotrypsin
This study investigated the effects of protease treatments (trypsin, chymotrypsin, and pepsin) under various pressure levels (0.1-300 MPa) for the characteristics of porcine placenta hydrolysates. According to gel electrophoretic patterns, the trypsin showed the best placental hydrolyzing activity followed by chymotrypsin, regardless of the pressure levels. In particular, the peptide bands of t...
متن کاملDi-ethanolamine Might Cause Bone-related Complications Due to the Reduction of Osteogenic Differentiation and Induction of Oxidative Stress
Di-ethanolamine (DEA) is a well-known environmental pollutant used in manufacturing soap, detergent, body lotion, and other sanitary products. DEA has been reported to cause cytotoxicity in different tissue and cell, but no study was found to explain the toxic effect of DEA on rat bone marrow mesenchymal stem cells (BMSCs) differentiation. Thus in the present study, the differentiation property...
متن کاملبررسی تاثیر ویتامین E بر تمایز آزمایشگاهی سلولهای بنیادی مزانشیم مغز استخوان رت بالغ به استئوبلاست طی تیمار همزمان با سدیم آرسنیت
Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs) to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium...
متن کاملEstrogen Promotes Early Osteoblast Differentiation and Inhibits Adipocyte Differentiation in Mouse Bone Marrow Stromal Cell Lines that Express Estrogen Receptor (ER) α or β.
Although cells of the osteoblast lineage express functional ERs, direct effects of estrogen on bone formation remain obscure. In the present study, we have investigated estrogen effects on osteoblastic and adipocytic differentiation from a mouse bone marrow stromal cell line, ST-2, which had been manipulated to overexpress either human ER (ST2ER ) or ER (ST2ER ). Treatment with bone morphogenet...
متن کامل